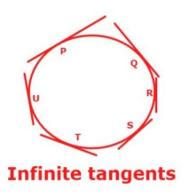
# **CLASS 10 MATHEMATICS**

# Ch 10 - CIRCLES

Ex 10.1

1. How many tangents can a circle have?


# **Answer:**

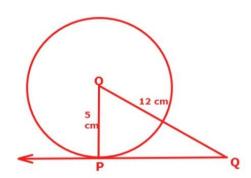
A circle can have infinite tangents to a circle.

We know that A circle is made up of infinite points which are at an equal distance from a point.

So there are infinite points on the Circumference of a circle,

Infinite tangents can be drawn from them.




| 2. Fill in the blanks:                               |
|------------------------------------------------------|
| (i) A tangent to a circle intersects it in           |
| point(s).                                            |
| Answer (i)                                           |
| A tangent to a circle intersects it in one point(s). |
|                                                      |
| (ii) A line intersecting a circle in two points      |
| is called a                                          |
| Answer (ii)                                          |
| A line intersecting a circle in two points is        |
| called a secant.                                     |
|                                                      |
| (iii) A circle can have parallel                     |
| tangents at the most.                                |
| Answer: (iii)                                        |
| A circle can have two parallel tangents at the most  |
|                                                      |
| (iv) The common point of a tangent to a circle       |
| and the circle is called                             |
| Answer (iv)                                          |
|                                                      |

SUBSCRIBE TO THE YOUTUBE CHANNEL:- AASANSTUDY

The common point of a tangent to a circle and the circle is called the point of contact.

- 3. A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that OQ = 12 cm. Length PQ is:
- (A) 12 cm
- (B) 13 cm
- (C) 8.5 cm
- (D) √119 cm

### **Answer:**



In this figure, the line OP is perpendicular to tangent PQ.

SUBSCRIBE TO THE YOUTUBE CHANNEL:- AASANSTUDY

Using Pythagoras theorem in triangle  $\triangle OPQ$ ,

Where Angle  $P = 90^{\circ}$ 

i.e. (Hypotenuse)<sup>2</sup>= (base)<sup>2</sup>+ (perpendicular)<sup>2</sup> thus,

$$OQ^2 = OP^2 + PQ^2$$

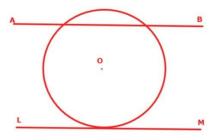
$$(12)^2 = 5^2 + PQ^2$$

$$144 = 25 + PQ^2$$

$$PQ^2 = 144-25$$

$$PQ^2 = 119$$

**PQ** = 
$$\sqrt{119}$$
 cm


Therefore,

option D i.e.  $\sqrt{119}$  cm is the length of PQ.

4. Draw a circle and two lines parallel to

a given line such that one is a tangent and the other, a secant to the circle.

**Answer:** 



In the figure,

LM and AB are the two parallel lines.

The line segment AB is the secant and the line segment LM is the Tangent.



SUBSCRIBE TO THE YOUTUBE CHANNEL:- AASANSTUDY